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Abstract
We show that, under certain conditions, some difference Painlevé equations
have nontrivial meromorphic solutions in the whole complex plane. These
meromorphic solutions are obtained by analytic continuation of asymptotic
solutions given in sectors of zero opening angle. The existence of these
asymptotic solutions is shown by using fundamental matrix solutions of
the associated linear systems with double unit characteristic roots and with
coefficients expressed by asymptotic series in fractional powers.
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Mathematics Subject Classification: 39A12, 39A11, 39A10, 34M55

1. Introduction

The six Painlevé equations are characterized by the Painlevé property: that, for every solution,
all the movable singularities are poles. Discrete analogues of Painlevé equations, which
are called discrete Painlevé equations, were discovered in various problems in mathematical
physics. For example, the non-autonomous mapping

yn+1 + yn−1 = (an + b)yn + c

1 − y2
n

,

which appears in connection with unitary matrix models of two-dimensional quantum gravity
[14], is known as the discrete PII [3, 15, 16]. The limiting procedure yn = zn/δ, an + b =
−(a′n + b′)/δ2, c = −c′/δ3 (δ → 0) yields the discrete PI

zn+1 + zn−1 = a′n + b′

zn

+
c′

z2
n

,

which is also obtained from Bäcklund transformations for the third Painlevé equation [3].
If a′ = −1, then the continuous limit zn = −ε−5/2 + ε−1/2u(t), n = ε−1t, b′ = 6ε−5,
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c′ = 4ε−15/2 (ε → 0) maps this equation to the first Painlevé equation u′′ = 6u2 + t [3]. In
general, discrete Painlevé equations admit the singularity confinement property, which has
been considered to correspond to the Painlevé property and to be an effective criterion for
characterizing them ([5], see also [4]).

From a general mapping of the form yn+1 + yn−1 = R(n, yn) with R(n, y) rational in
(n, y), we obtain the corresponding difference equation

y(x + 1) + y(x − 1) = R(x, y(x))

in the complex domain, by replacing n with the complex variable x. As an analogue of the
Painlevé property for the difference equation above or for

y(x + 1)y(x − 1) = R(x, y(x)),

Ablowitz, Halburd and Herbst [1] proposed the property that it has a non-rational meromorphic
solution of finite order, and proved that this condition implies degy(R) � 2 (see also [17]).
From the category of difference equations of the form

y(x + 1) + y(x − 1) = R∗(x, y(x)),

where R∗(x, y) is rational in y and meromorphic in x, under the supposition that there exists
an admissible meromorphic solution of finite order, Halburd and Korhonen [7] derived a class
of difference equations containing

y(x + 1) + y(x − 1) = αx + β

y(x)
+ γ, (1.1)

y(x + 1) + y(x − 1) = αx + β

y(x)
+

γ

y(x)2
, (1.2)

y(x + 1) + y(x − 1) = (αx + β)y(x) + γ

1 − y(x)2
(1.3)

with α, β, γ ∈ C (see also [6]), which may be regarded as difference Painlevé equations.
Equation (1.2) (respectively, (1.3)) corresponds to the discrete PI (respectively, the discrete
PII) mentioned above, and the discrete version of (1.1) is known as another type of discrete PI

[15]. Difference equations including (1.1), (1.2) and (1.3) are reviewed in [8] mainly from a
view point of complex analysis and value distribution theory.

Classical special functions such as the hypergeometric function, the Bessel function and
the gamma function satisfy differential or difference equations, and the Painlevé transcendents
have a plenty of interesting properties as nonlinear special functions. In view of this fact, we
may expect that each of these difference Painlevé equations defines new interesting special
functions, if it admits nontrivial meromorphic solutions. Indeed, some of the important
open problems posed in [8] are concerned with the existence of meromorphic solutions.
Equation (1.2) (respectively, (1.3)) with α = 0 has a general solution expressible in terms of
the elliptic function ℘(z) (respectively, sn(z)) ([6, 8]). However, except for such special cases,
the existence of meromorphic solutions has not been established. In this paper we show the
existence of nontrivial meromorphic solutions of (1.1), (1.2) and (1.3) under the conditions
γ 2/α ∈ R, γ 2/α3 ∈ R and α ∈ R\{0}, respectively.

We discuss meromorphic solutions mainly for (1.1). We show that (1.1) has an asymptotic
solution in a certain domain containing the positive real axis, which may be continued
meromorphically to the whole complex plane. As a first step we construct formal solutions
of (1.1) in section 3. In section 4, using a holomorphic function asymptotic to one of
these formal solutions, we derive a nonlinear difference equation equivalent to (1.1). The
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Jacobi matrix related to the linear part of this equation has double unit eigenvalues. Many
of the works on nonlinear difference equations (for example, [9–12]) treated ones with no
unit eigenvalues, except for some cases with a single unit eigenvalue [13, 18, 19]. These
results are not applicable to our case. In proving the asymptotic validity of our solution, we
use linearly independent solutions of a linear difference equation which approximates this
equivalent nonlinear equation. Section 5 is devoted to finding a fundamental matrix solution
of this associated linear system with double unit characteristic roots and with coefficients
expressed by asymptotic series in fractional powers. The proofs of the results for (1.1) are
given in section 6. The results for (1.2) and (1.3) are obtained by analogous arguments, which
are illustrated in sections 7 and 8.

2. Main results

In what follows we suppose that α �= 0, and the branches of x1/ν (ν ∈ N) are taken so that
x1/ν > 0 for x > 0. For a > 0, r > 1, let us set

Da
+∞(r) := {x| |Im x| < |Re x|a, Re x > r}.

In each appearance of this symbol with no explanation on r, we suppose that the constant r
is chosen sufficiently large. If a < 1, this may be regarded as a sector of zero opening angle
with the centre line R.

2.1. Equation (1.1)

We begin with the result on formal solutions of (1.1).

Proposition 2.1. Equation (1.1) admits formal solutions of the form

	±(α, β, γ, x) = ±
√

α/2x1/2 +
∑
j�0

c±
j x−j/2, (2.1)

where c±
j (j = 0, 1, 2, . . .) are rational functions of

√
α/2, β and γ, in particular

c±
0 = γ

4
, c±

1 = ± 8β + γ 2

32
√

α/2
.

These formal solutions satisfy 	−(α, β,−γ, x) = −	+(α, β, γ, x).

Our results on asymptotic solutions of (1.1) are stated as follows:

Theorem 2.2. Suppose that λ := γ /
√

α/2 ∈ R.

(1) If λ < 0, then (1.1) has a solution ϕ−(x) = ϕ−(α, β, γ, x) with the properties:

(a) ϕ−(x) is holomorphic in the domain D
1/4
+∞(r);

(b) ϕ−(x) admits the asymptotic representation

ϕ−(x) ∼ 	−(α, β, γ, x)

as x → ∞ through D
1/4
+∞(r).

(2) If λ > 0, then (1.1) has the solution ϕ+(x) := −ϕ−(α, β,−γ, x) holomorphic in D
1/4
+∞(r).

Remark 2.1. Since 	−(α, β,−γ, x) = −	+(α, β, γ, x) (cf proposition 2.1), we have
ϕ+(x) ∼ 	+(α, β, γ, x) as x → ∞ through D

1/4
+∞(r).
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Under other conditions there exist solutions holomorphic in the domain

D
1/4
−∞(−r) := {−x

∣∣x ∈ D
1/4
+∞(r)

}
(r > 0),

which contains the negative real axis.

Theorem 2.3. Suppose that λ̃ := γ /
√−α/2 ∈ R. If λ̃ < 0 (respectively, λ̃ > 0), then (1.1)

has the solution

ϕ̃−(x) := ϕ−(−α, β, γ,−x) (respectively, ϕ̃+(x) := −ϕ−(−α, β,−γ,−x)),

which is holomorphic in D
1/4
−∞(−r).

Theorem 2.4. Suppose that γ = 0. Then (1.1) admits four solutions ϕ±
0 (x) :=

±ϕ0(α, β, x), ϕ̃±
0 (x) := ±ϕ0(−α, β,−x) with the properties:

(a) ϕ±
0 (x) (respectively, ϕ̃±

0 (x)) are holomorphic in the domain Re x > r (respectively,
Re x < −r), where r > 0 is sufficiently large;
(b) ϕ0(α, β, x) (respectively, ϕ0(−α, β,−x)) admits the asymptotic representation

ϕ0(α, β, x) ∼ −	−(α, β, 0, x) = 	+(α, β, 0, x)

(respectively, ϕ0(−α, β,−x) ∼ −	−(−α, β, 0,−x) = 	+(−α, β, 0,−x))

as x → ∞ through the domain Re x > r (respectively, Re x < −r).

Since
⋃∞

n=0

{
x − n

∣∣x ∈ D
1/4
+∞(r)

} = ⋃∞
n=0

{
x + n

∣∣x ∈ D
1/4
−∞(−r)

} = C, by virtue
of equation (1.1), these asymptotic solutions are continued meromorphically to the whole
complex plane. Thus we have

Theorem 2.5. If γ 2/α ∈ R, then (1.1) admits a nontrivial meromorphic solution in the whole
complex plane.

2.2. Equation (1.2)

If γ = 0, then (1.2) coincides with (1.1). We may suppose that γ �= 0.

Proposition 2.6. Equation (1.2) admits formal solutions of the form

	∗
±(α, β, γ, x) = ±

√
α/2x1/2 +

∑
j�1

c∗±
j x−j/2,

where c∗±
j (j = 1, 2, 3, . . .) are rational functions of

√
α/2, β and γ , in particular

c∗±
1 = ± β

4
√

α/2
, c∗±

2 = γ

2α
.

These formal solutions satisfy 	∗
−(α, β,−γ, x) = −	∗

+(α, β, γ, x).

Theorem 2.7. Suppose that λ∗ := 2γ /(α
√

α/2) ∈ R\{0}.
(1) If λ∗ > 0, then (1.2) has a solution ϕ∗

−(x) = ϕ∗
−(α, β, γ, x) with the properties:

(a) ϕ∗
−(x) is holomorphic in the domain D

3/4
+∞(r);

(b) ϕ∗
−(x) admits the asymptotic representation

ϕ∗
−(x) ∼ 	∗

−(α, β, γ, x)

as x → ∞ through D
3/4
+∞(r).

(2) If λ∗ < 0, then (1.2) has the solution ϕ∗
+(x) := −ϕ∗

−(α, β,−γ, x) holomorphic in

D
3/4
+∞(r).
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Theorem 2.8. Suppose that λ̃∗ := −2γ /(α
√−α/2) ∈ R\{0}. If λ̃∗ > 0 (respectively,

λ̃∗ < 0), then (1.2) has the solution

ϕ̃∗
−(x) := ϕ∗

−(−α, β, γ,−x) (respectively, ϕ̃∗
+(x) := −ϕ∗

−(−α, β,−γ,−x)),

which is holomorphic in D
3/4
−∞(−r).

Theorem 2.9. If γ 2/α3 ∈ R, then (1.2) admits a nontrivial meromorphic solution in the whole
complex plane.

2.3. Equation (1.3)

Our results on (1.3) are stated as follows.

Proposition 2.10. Equation (1.3) admits formal solutions of the form

�±(α, β, γ, x) = ±
√

−α/2x1/2 +
∑
j�1

d±
j x−j/2,

where d±
j (j = 1, 2, 3, . . .) are rational functions of

√−α/2, β and γ, in particular

d±
1 = ± 2 − β

4
√−α/2

, d±
2 = γ

2α
.

These formal solutions satisfy �−(α, β,−γ, x) = −�+(α, β, γ, x).

Theorem 2.11. If α > 0, then (1.3) has two solutions ψ−(x) = ψ−(α, β, γ, x) and
ψ+(x) := −ψ−(α, β,−γ, x) with the properties:
(a) ψ±(x) are holomorphic in the domain D

1/2
+∞(r);

(b) ψ±(x) admit the asymptotic representations

ψ±(x) ∼ �±(α, β, γ, x)

as x → ∞ through D
1/2
+∞(r).

Theorem 2.12. If α < 0, then (1.3) has two solutions ψ̃±(x) := ∓ψ−(−α, β,∓γ,−x)

holomorphic in D
1/2
−∞(−r).

Theorem 2.13. If α ∈ R\{0}, then (1.3) admits a nontrivial meromorphic solution in the
whole complex plane.

3. Proof of proposition 2.1

To prove proposition 2.1 we construct formal series (2.1). In this section we treat formal
power series in x−1/2. We write f (x) = O(−d)[xd0 ] (d0, d ∈ Q, d > 0) if x−d0f (x) ∈
C[[x−d ]], C[[X]] denoting the ring of formal power series in X.

Substitute y(x) = cx1/2 +y0(x) (c �= 0) into (1.1). Observing that (x+1)1/2 +(x−1)1/2 =
x1/2(2 − x−2/4 + O(−2)[x−4]), we have

y0(x + 1) + y0(x − 1) = −cx1/2

(
2 − x−2

4
+ O(−2)[x

−4]

)
+ γ

+
α

c
x1/2

(
1 +

β

α
x−1

)
+

∑
j�1

(−1)jα

cj+1
x−(j−1)/2

(
1 +

β

α
x−1

)
y0(x)j ,

5
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whose right-hand member is convergent if |x| > 1 and |y0(x)| < |cx1/2|. Choose
c = c± = ±√

α/2 so that the right-hand member becomes

γ +
β

c±
x−1/2 +

c±
4

x−3/2(1 + O(−2)[x
−2]) +

∑
j�1

(−1)jα

c
j+1
±

x−(j−1)/2

(
1 +

β

α
x−1

)
y0(x)j .

To remove the constant term γ we put y0(x) = c0 + y1(x). Comparing the constant terms
on both sides, we have 2c0 = γ − αc0

/
c2
± = γ − 2c0, that is, c0 = γ /4. Then the equation

is written in the form

y1(x + 1) + y1(x − 1) = f ±
0 (x) +

(−2 + f ±
1 (x)

)
y1(x) +

∑
j�2

f ±
j (x)y1(x)j , (3.1)

where

f ±
0 (x) = 8β + γ 2

8c±
x−1/2 + O(−1/2)[x

−1],

f ±
1 (x) = γ

c±
x−1/2 − 8β + 3γ 2

4α
x−1 + O(−1/2)[x

−3/2],

f ±
2 (x) = 2

c±
x−1/2 + O(−1/2)[x

−1], f ±
j (x) = O(−1/2)[x

−(j−1)/2] (j � 3).

Note that f ±
j (x) (j � 0) are holomorphic for |x| > 1, and that the right-hand member is

convergent if |x| > 1 and if |x−1/2y1(x)| is sufficiently small.
In (3.1) put y1(x) = c1x

−1/2 + y2(x) and compare the coefficients of x−1/2. Choosing
c1 = c±

1 = (8β + γ 2)c−1
±

/
32, we have

y2(x + 1) + y2(x − 1) = f ∗±
0 (x) +

(−2 + f ∗±
1 (x)

)
y2(x) +

∑
j�2

f ∗±
j (x)y2(x)j ,

with

f ∗±
0 (x) = O(−1/2)[x

−1],

f ∗±
1 (x) = γ

c±
x−1/2 − γ 2

2α
x−1 + O(−1/2)[x

−3/2],

f ∗±
j (x) = O(−1/2)[x

−(j−1)/2] (j � 2).

Repeating suitably chosen substitutions of the form yj (x) = c±
j x−j/2 +yj+1(x) with c±

j rational
in (

√
α/2, β, γ ) infinitely many times, we obtain the formal transformations

y(x) = 	±(α, β, γ, x) + z(x), 	±(α, β, γ, x) = ±
√

α/2x1/2 +
γ

4
+

∑
j�1

c±
j x−j/2,

by which (1.1) is taken into

z(x + 1) + (2 + ĝ±(x))z(x) + z(x − 1) =
∑
j�2

ĝ±
j (x)z(x)j (3.2)

with

ĝ±(x) = ∓λx−1/2 +
λ2

4
x−1 + O(−1/2)[x

−3/2], λ = γ√
α/2

,

ĝ±
j (x) = O(−1/2)[x

−(j−1)/2] (j � 2).

(3.3)

Since (3.2) admits the trivial solution z(x) ≡ 0, the formal series 	±(α, β, γ, x) satisfy
(1.1). By the procedure above the coefficients of each formal solution are uniquely
determined. Observing that equation (1.1) remains invariant under the substitution γ �→ −γ,

6
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y(x) �→ −y(x), we obtain the relation between 	−(α, β,−γ, x) and 	+(α, β, γ, x) as in
proposition 2.1.

Remark 3.1. In particular, if γ = 0, that is, λ = 0, then the transformations above are

y0(x) = y1(x), y1(x) = β

4c±
x−1/2 + y2(x), y2(x) = (α2 − 2β2)

32αc±
x−3/2 + y3(x), . . . ,

which yield (3.2) with

ĝ±(x) = −x−2

4
+ O(−1/2)[x

−3]. (3.4)

4. Difference equation equivalent to (1.1)

Recall the formal series

	−(α, β, γ, x) = −
√

α/2x1/2 +
γ

4
+

∑
j�1

c−
j x−j/2

obtained in section 3. By [20, theorem 9.3], there exists a holomorphic function ξ(x) in the
half-plane �0 : Re x > r0 such that

ξ(x) ∼
∑
j�1

c−
j x−j/2

as x → ∞ through �0, where r0 is a sufficiently large positive number. Note that we may
uniquely determine C±

j ∈ C in such a way that the identities∑
j�1

c−
j (x ± 1)−j/2 =

∑
j�1

C±
j x−j/2

hold as formal series. The following lemma is easily checked.

Lemma 4.1. The functions ξ(x ± 1) admit the asymptotic representations

ξ(x ± 1) ∼
∑
j�1

C±
j x−j/2

as x → ∞ through the half-plane Re x > r0 + 1.

Observe that |ξ(x)| = o(1) in �0. Putting y1(x) = ξ(x) + z(x) in equation (3.1) with
f −

j (x) and using lemma 4.1, we obtain the following difference equation:

Proposition 4.2. By the transformation

y(x) = −
√

α/2x1/2 +
γ

4
+ ξ(x) + z(x)

equation (1.1) is changed into

z(x + 1) + (2 + g(x))z(x) + z(x − 1) = G(x, z(x)) (4.1)

with the properties:
(1) g(x) is holomorphic in the half-plane �1 : Re x > r1, and is expressed in the form

g(x) = λx−1/2 +
λ2

4
x−1 + O(x−3/2), λ = γ√

α/2
(4.2)

7
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as x → ∞ through �1, in particular, if λ = 0,

g(x) = −x−2

4
+ O(x−3), (4.3)

where r1 > r0 > 0 is sufficiently large;
(2) G(x, ζ ) is holomorphic in the domain �1 × {ζ | |ζ | < 1} and is expanded into the

convergent series

G(x, ζ ) = g0(x) +
∑
j�2

gj (x)ζ j ,

whose coefficients satisfy

g0(x) ∼ 0, gj (x) = O(x−(j−1)/2) (j � 2) (4.4)

as x → ∞ through �1.

Remark 4.1. The coefficients above admit the asymptotic representations

g(x) ∼ ĝ−(x), gj (x) ∼ ĝ−
j (x) (j � 2)

as x → ∞ through �1, where ĝ−(x) and ĝ−
j (x) are the formal series given by (3.3).

5. Associated linear system

In �1 : Re x > r1, consider the equation

z(x + 1) + (2 + g(x))z(x) + z(x − 1) = 0 (5.1)

corresponding to the linear part of (4.1). Then u(x) = e−π ixz(x) satisfies

u(x + 1) − (2 + g(x))u(x) + u(x − 1) = 0, (5.2)

which is equivalent to the system of difference equations

u(x + 1) = A(x)u(x),

A(x) =
(

1 + g(x) 1
g(x) 1

)
, u(x) =

(
u1(x)

u2(x)

)
(5.3)

with u1(x) = u(x), u2(x) = u(x) − u(x − 1).

In this section we construct a fundamental matrix solution for system (5.3). The following
matrix basis is very effective in carrying out our computations:

I :=
(

1 0
0 1

)
, J :=

(−1 0
0 1

)
, K :=

(
0 1

−1 0

)
, L :=

(
0 1
1 0

)
,

which satisfies

J 2 = −K2 = L2 = I,

JK = −KJ = −L, KL = −LK = −J, LJ = −JL = K.

The process of construction is divided into several steps. First we treat the case where γ �= 0,

that is, λ �= 0.

8
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5.1. Step 1

We begin with the following lemma, which is checked by a direct computation.

Lemma 5.1. The matrix A(x) admits the eigenvalues

ρ±(x) := 1 + g(x)/2 ±
√

g(x) + g(x)2/4,

where the branch of the square root is fixed as x → ∞ through �1. Moreover

T (x)−1A(x)T (x) =
(

ρ−(x) 0
0 ρ+(x)

)
=

(
1 +

g(x)

2

)
I +

√
g(x) +

g(x)2

4
J,

where

T (x) =
(

1 1

−g(x)/2 −
√

g(x) + g(x)2/4 −g(x)/2 +
√

g(x) + g(x)2/4

)
.

By this lemma we have

T (x + 1)−1T (x) = I + h1(x)(I − L) + h2(x)(K − J ), (5.4)

where

h1(x) = 2h2(x)(1 + (g(x) + g(x + 1))/4)√
g(x) + g(x)2/4 +

√
g(x + 1) + g(x + 1)2/4

,

h2(x) = g(x) − g(x + 1)

4
√

g(x + 1) + g(x + 1)2/4
.

(5.5)

Observe that, by (4.2),√
g(x) + g(x)2/4 = λ1/2x−1/4(1 + λx−1/2/4 + O(x−1)) (5.6)

as x → ∞ through �1 : Re x > r1, with the branch of x1/4 taken so that x1/4 > 0 for x > 0.
Here, and in some sequential steps, the constant r1 is again chosen larger if necessary. Then
these quantities are estimated as follows:

h1(x) = x−1

8
(1 + O(x−1/2)), h2(x) = O(x−5/4) (5.7)

as x → ∞ through �1. By u(x) = T (x)v(x), system (5.3) is taken into

v(x + 1) = B(x)v(x) (5.8)

with

B(x) = T (x + 1)−1A(x)T (x) = T (x + 1)−1T (x)

(
ρ−(x) 0

0 ρ+(x)

)
.

Using (5.4) and lemma 5.1, we have

B(x) = b0(x)I + b1(x)J + b2(x)K + b3(x)L,

b0(x) = (1 + h1(x))(1 + g(x)/2) − h2(x)
√

g(x) + g(x)2/4,

b1(x) = (1 + h1(x))
√

g(x) + g(x)2/4 − h2(x)(1 + g(x)/2),

b2(x) = h2(x)(1 + g(x)/2) − h1(x)
√

g(x) + g(x)2/4,

b3(x) = −h1(x)(1 + g(x)/2) + h2(x)
√

g(x) + g(x)2/4.

9
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By (5.6) and (5.7),

b0(x) = 1 +
λ

2
x−1/2 +

1 + λ2

8
x−1 + O(x−3/2),

b1(x) = λ1/2x−1/4 +
λ3/2

4
x−3/4 + O(x−5/4),

b2(x) = O(x−5/4),

b3(x) = −x−1

8
+ O(x−3/2)

(5.9)

as x → ∞ through �1.

5.2. Step 2

To remove the term −x−1/8 of b3(x), we apply a further transformation v(x) = (I +
p(x)K)y(x), which changes (5.8) into

y(x + 1) = E(x)y(x) (5.10)

with

E(x) = (I + p(x + 1)K)−1B(x)(I + p(x)K)

= 1

1 + p(x + 1)2
(I − p(x + 1)K)B(x)(I + p(x)K)

= 1

1 + p(x + 1)2
[((1 + p(x)p(x + 1))b0(x) + (p(x + 1) − p(x))b2(x))I

+ ((1 − p(x)p(x + 1))b1(x) + (p(x + 1) + p(x))b3(x))J

+ ((1 + p(x)p(x + 1))b2(x) − (p(x + 1) − p(x))b0(x))K

+ ((1 − p(x)p(x + 1))b3(x) − (p(x + 1) + p(x))b1(x))L]. (5.11)

Put p(x) = −λ−1/2x−3/4/16. Then

b3(x) − (p(x + 1) + p(x))b1(x) = −x−1

8
(1 + O(x−1/2))

− λ1/2x−1/4(1 + O(x−1/2))(p(x + 1) + p(x)) = O(x−3/2),

and hence

E(x) = (e0(x) + x−1/8)I + e1(x)J + O(x−5/4)K + O(x−3/2)L,

e0(x) = 1 +
λ

2
x−1/2 +

λ2

8
x−1 + O(x−3/2), (5.12)

e1(x) = λ1/2x−1/4 +
λ3/2

4
x−3/4 + O(x−5/4).

5.3. Step 3

Set σ(x) = (4/3)λ1/2x3/4 + (1/3)λ3/2x1/4. Then

e−σ(x+1)+σ(x) = e0(x) − e1(x) + O(x−5/4), eσ(x+1)−σ(x) = e0(x) + e1(x) + O(x−5/4).

The function σ(x) is easily obtained by supposing that σ(x) = σ1x
3/4 +σ2x

1/4 and comparing
the coefficients on both sides. Moreover, (x + 1)1/8 = x1/8(1 + x−1/8 + O(x−2)). Hence by

y(x) = x1/8

(
e−σ(x) 0

0 eσ(x)

)
w(x)

10
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system (5.10) is reduced to

w(x + 1) = F(x)w(x) (5.13)

with

F(x) = I +

(
ε11(x) e2σ(x)ε12(x)

e−2σ(x)ε21(x) ε22(x)

)
, εij (x) = O(x−5/4).

5.4. Step 4

To estimate a fundamental matrix solution of (5.13) we use the following lemma.

Lemma 5.2. Let S(x) be a matrix given by S(x) = I + X(x),X(x) = O(x−1−τ ) with some
τ > 0 as x → ∞ through Da

+∞(r) (a > 0, r > 0). Here X(x) = O(x−1−τ ) means that every
entry of X(x) is O(x−1−τ ). Then the infinite product

�∞(x) = S(x)S(x + 1) · · · S(x + n) · · · (n ∈ N)

is holomorphic in Da
+∞(r) and satisfies �∞(x) = I + O(x−τ ).

Proof. Let m and n be arbitrary positive integers satisfying n > m, and write �n(x) :=
S(x)S(x + 1) · · · S(x + n). Then

‖�n(x) − �m(x)‖ = ‖�m(x)(S(x + m + 1) · · · S(x + n) − I )‖
� ‖�m(x)‖ · ‖(I + X(x + m + 1)) · · · (I + X(x + n)) − I‖

�
m∏

j=0

(1 + C0|x + j |−1−τ ) ·
⎛⎝ n∏

j=m+1

(1 + C0|x + j |−1−τ ) − 1

⎞⎠
� exp

⎛⎝C0

m∑
j=0

|x + j |−1−τ

⎞⎠ ⎛⎝exp

⎛⎝C0

n∑
j=m+1

|x + j |−1−τ

⎞⎠ − 1

⎞⎠
in Da

+∞(r). Here C0 is some positive number, and ‖ · ‖ denotes the standard norm for matrices
(see, for example [20, p 11]). Since

∑∞
j=0 |x +j |−1−τ = O(x−τ ) in Da

+∞(r) (see, for example,
[2, p 24]), the matrix function �n(x) converges to �∞(x) uniformly for x ∈ Da

+∞(r), which
is holomorphic in Da

+∞(r). Observing that, for every n ∈ N,

‖�n(x) − I‖ �
∞∏

j=0

(1 + C0|x + j |−1−τ ) − 1 = O(x−τ ),

we obtain �∞(x) = I + O(x−τ ), which completes the proof. �

Remark 5.1. In the statement of lemma 5.2, the domain Da
+∞(r) may be replaced with the

half-plane Re x > r.

Now we are ready to estimate a fundamental matrix solution of (5.13). Suppose that
λ < 0. In D

1/4
+∞(r1), observe that

x3/4 = (Re x + i Im x)3/4 = (Re x)3/4(1 + O(|Im x|/|Re x|))
= (Re x)3/4(1 + O(|Re x|−3/4)) = (Re x)3/4 + O(1),

and that x1/4 = (Re x)1/4 + O(1). Since λ1/2 is pure imaginary,

e±σ(x) = O(1) uniformly for x ∈ D
1/4
+∞(r1), (5.14)

11
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so that F(x) = I + O(x−5/4) in D
1/4
+∞(r1). By lemma 5.2, in D

1/4
+∞(r2),

W(x) := F(x)−1F(x + 1)−1 · · ·F(x + n)−1 · · · = I + O(x−1/4)

is a fundamental matrix solution of (5.13), where r2 (> r1) is a sufficiently large positive
number. Observing that(

e−σ(x) 0
0 eσ(x)

)
W(x) = (I + O(x−1/4))

(
e−σ(x) 0

0 eσ(x)

)
,

we obtain the following:

Proposition 5.3. If λ < 0, then system (5.3) admits the fundamental matrix solution

U(x) =
(

1 + O(x−1/4) 1 + O(x−1/4)

−λ1/2x−1/4(1 + O(x−1/4)) λ1/2x−1/4(1 + O(x−1/4))

) (
e−σ(x) 0

0 eσ(x)

)
x1/8,

σ (x) = 4

3
λ1/2x3/4 +

λ3/2

3
x1/4

as x → ∞ through D
1/4
+∞(r2). Moreover, det U(x) = 2λ1/2(1 + O(x−1/4)).

5.5. Case where λ = 0

If λ = 0, then g(x) = −x−2/4 + O(x−3) in �1 (cf (4.3)). From (5.5) we have h1(x) =
(x−1/2)(1 + O(x−1)) and h2(x) = O(x−2). Hence, by u(x) = T (x)v(x), system (5.3) is
changed into (5.8) with

B(x) =
(

1 +
x−1

2
+ O(x−2)

)
I +

(
i

2
x−1 + O(x−2)

)
J + O(x−2)K −

(
x−1

2
+ O(x−2)

)
L,

and, by v(x) = (−J + iK)y(x), this is changed into

y(x + 1) = E0(x)y(x), E0(x) = I +

(
1/2 1
0 1/2

)
x−1 + O(x−2).

The further transformation

y(x) =
(

1 log x

0 1

)
x1/2w(x)

reduces this into the system w(x + 1) = (I + O(x−2))w(x). Using lemma 5.2 together with
remark 5.1, we have the following:

Proposition 5.4. If λ = 0, then system (5.3) admits the fundamental matrix solution

U(x) =
(

1 − i + O(x−1) −1 + i + O(x−1)

− i
2 (1 + i)x−1(1 + O(x−1)) − i

2 (1 + i)x−1(1 + O(x−1))

)

× (I + O(x−1(log x)2))

(
1 log x

0 1

)
x1/2

as x → ∞ through �2 : Re x > r2. Moreover, det U(x) = −2i(1 + O(x−1(log x)2)).

12
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6. Proofs of the results on (1.1)

6.1. Proof of theorem 2.2

Suppose that λ < 0. To show the asymptotic validity of ϕ−(x), it is sufficient to prove that
(4.1) has a solution such that z(x) ∼ 0 as x → ∞ through D

1/4
+∞(r) for some r > 0. Recall

linear equation (5.1) corresponding to (4.1). By proposition 5.3, (5.1) admits the linearly
independent solutions

z1(x) = eπ ix−σ(x)x1/8(1 + O(x−1/4)), z2(x) = eπ ix+σ(x)x1/8(1 + O(x−1/4))

as x → ∞ through D
1/4
+∞(r2). The Casorati determinant is

�(x) :=
∣∣∣∣∣ z1(x) z2(x)

z1(x + 1) z2(x + 1)

∣∣∣∣∣ = −e2π ix det U(x + 1) = −2λ1/2 e2π ix(1 + O(x−1/4)).

Note that, in D
1/4
+∞(r2), every solution of the equation

ω(x) = S(x, ω(x)) :=
∞∑

j=0

H(j ; x)G(x + j, ω(x + j)) (6.1)

with

H(j ; x) := z1(x)z2(x + j) − z1(x + j)z2(x)

�(x + j)

satisfies (4.1), provided that the right-hand member converges. This summation relation is the
difference version of an integral equation. We would like to construct a solution of (6.1) such
that ω(x) ∼ 0 as x → ∞ through D

1/4
+∞(r). By proposition 4.2, we may suppose that G(x, ζ )

has the following properties:
(a) for Re x > r2, |ζ | < 1/2,

|G(x, ζ )| � |g0(x)| + |ζ |2; (6.2)

(b) for Re x > r2, |ζ1|, |ζ2| < 1/2,

|G(x, ζ2) − G(x, ζ1)| � |ζ2 − ζ1|(|ζ1| + |ζ2|). (6.3)

By virtue of (5.14) there exists a positive number κ0 such that, for every j ∈ N ∪ {0},
|H(j ; x)| � κ0|x + j |1/4 (6.4)

uniformly for x ∈ D
1/4
+∞(r2).

Let N be a given integer such that N � 4. Since g0(x) ∼ 0 as x → ∞ through the
domain Re x > r2, there exists a positive number MN such that

|g0(x)| � MN |x|−N−3 (6.5)

for Re x > r2. The following proposition guarantees the existence of an iterative sequence.

Proposition 6.1. Suppose that rN (N � 4) satisfies rN > r2 + 1, 4MNr−N+3
N � 1 and

κ0κN+1r
−1
N � 1, where κN+1 is a positive number such that

∑∞
j=0 |x + j |−N−2 � κN+1|x|−N−1

uniformly for Re x > r2. Then, we may define a sequence {ωn(x)|n = 0, 1, 2, . . .} by

ω0(x) ≡ 0, ωn+1(x) = S(x, ωn(x))

for x ∈ D
1/4
+∞(rN). Furthermore, for every n, ωn(x) is holomorphic in D

1/4
+∞(rN), and

|ωn(x)| � 2MN |x|−N . (6.6)

13
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Proof. This proposition is verified by induction on n. Suppose that ωn(x) is holomorphic
in D

1/4
+∞(rN) and satisfies (6.6). Then, using (6.4), (6.2) and (6.5), we have, for every

x ∈ D
1/4
+∞(rN) and for every j � 0,

|H(j ; x)G(x + j, ωn(x + j))| � |H(j ; x)|(|g0(x + j)| + |ωn(x + j)|2)
� κ0|x + j |1/4(MN |x + j |−N−3 + 4M2

N |x + j |−2N)

� 2κ0MN |x + j |−N−3+1/4 � 2κ0MN |x + j |−N−2 � 2κ0MN(r2 + j)−N−2,

which implies the uniform convergence of the summation S(x, ωn(x)). Hence ωn+1(x) =
S(x, ωn(x)) is holomorphic in D

1/4
+∞(rN), and

|ωn+1(x)| = |S(x, ωn(x))| � 2κ0MN

∞∑
j=0

|x + j |−N−2

� 2κ0κN+1MN |x|−N−1 � 2MN |x|−N,

implying that ωn+1(x) satisfies (6.6). This completes the proof. �

For every n � 1, we have

|ωn+1(x) − ωn(x)| � 4κ0κN−2MNr−1 sup
0�j<∞

|ωn(x + j) − ωn−1(x + j)| (6.7)

in D
1/4
+∞(rN) (for κN−2 see proposition 6.1, and note that N � 4). Indeed, by (6.3) and

proposition 6.1, the left-hand member is estimated as follows:

|S(x, ωn(x)) − S(x, ωn−1(x))|

�
∞∑

j=0

|H(j ; x)||G(x + j, ωn(x + j)) − G(x + j, ωn−1(x + j))|

�
∞∑

j=0

κ0|x + j |1/4 · 4MN |x + j |−N |ωn(x + j) − ωn−1(x + j)|

� 4κ0κN−2MN |x|−N+2 sup
0�j<∞

|ωn(x + j) − ωn−1(x + j)|. (6.8)

Rechoosing rN so that 4κ0κN−2MNr−1
N < 1/2, if necessary, we have from (6.7) that

sup
0�j<∞

|ωn+1(x + j) − ωn(x + j)| � 2−n sup
0�j<∞

|ω1(x + j)| � 2−n+1MN

in D
1/4
+∞(rN). Hence ωn(x) converges uniformly to a function ω(x) holomorphic in D

1/4
+∞(rN),

and by (6.6) we have

|ω(x)| � 2MN |x|−N (6.9)

in D
1/4
+∞(rN). Furthermore, by the same argument as in the proof of proposition 6.1, we can

verify the uniform convergence of the summation S(x, ω(x)) in D
1/4
+∞(rN). Note that, in (6.8),

ωn−1(x) may be replaced with ω(x), because of (6.9). Thus we have

|S(x, ω(x)) − S(x, ωn(x))| � 1

2
sup

0�j<∞
|ω(x + j) − ωn(x + j)|

� 1

2

∑
k�n

sup
0�j<∞

|ωk+1(x + j) − ωk(x + j)| � MN

∑
k�n

2−k = 2−n+1MN,

so that S(x, ωn(x)) converges to S(x, ω(x)) for x ∈ D
1/4
+∞(rN). Therefore ω(x) satisfies

equation (6.1). Now we set r = r4. Since ω(x) is holomorphic in D
1/4
+∞(r), we deduce

14
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from (6.9) that, for each N � 4, xNω(x) is bounded in D
1/4
+∞(r). Consequently (4.1) has

the solution z(x) = ω(x) such that ω(x) ∼ 0 as x → ∞ through D
1/4
+∞(r). Thus we obtain

assertion (1) of theorem 2.2.
Since (1.1) is invariant under the substitution γ �→ −γ, y(x) �→ −y(x), assertion (2)

immediately follows from assertion (1). This completes the proof of theorem 2.2.

6.2. Proofs of theorems 2.3 and 2.4

Equation (1.1) is invariant under the substitution α �→ −α, x �→ −x, y(−x) �→ y(x). From
theorem 2.2 together with this fact, we immediately obtain theorem 2.3.

In the case where λ = 0, by proposition 5.4, equation (5.1) admits the linearly independent
solutions

z1(x) = eπ ixx1/2(1 + O(x−1(log x)2)),

z2(x) = eπ ixx1/2 log x(1 + O(x−1(log x)2)) − eπ ixx1/2(1 + O(x−1(log x)2)),

with the Casorati determinant �(x) := −e2π ix(1 + O(x−1(log x)2)) in the domain Re x > r2.
For Re x > r2, we have |H(j ; x)| � κ0|x + j | log |x + j | and |g0(x)| � MN |x|−N−4 instead
of (6.4) and (6.5), respectively, where N is a given integer such that N � 5. Choose
rN (N � 5) satisfying rN > r2 + 1, 4MNr−N+4

N � 1 and κ0κN+1r
−1
N � 1. Then, in the domain

D∗
+∞(rN) := {x|Re x > r2, |x| > rN }, we may define the sequence {ωn(x)|n = 0, 1, 2, . . .}

as in proposition 6.1, which satisfies |ωn(x)| � 2MN |x|−N for x ∈ D∗
+∞(rN). By the same

argument as in section 6.1 with slight modification, we can show that (4.1) has a solution z(x)

satisfying z(x) ∼ 0 as x → ∞ through D∗
+∞(r5). Thus we obtain the required solution

ϕ−
0 (x) = −ϕ0(α, β, x) ∼ 	−(α, β, 0, x)

as x → ∞ through the domain Re x > r (= r5). The other asymptotic solutions are
derived by using the invariant properties of (1.1) under the substitutions y(x) �→ −y(x) and
(α, x, y(−x)) �→ (−α,−x, y(x)). In this way theorem 2.4 is obtained.

7. Proofs of the results on (1.2)

Putting y(x) = c±x1/2 + y0(x), c± = ±√
α/2 in (1.2), we get an equation of the form

y0(x + 1) + y0(x − 1) = β

c±
x−1/2 +

2γ

α
x−1 +

c±
4

x−3/2 + O(−1/2)[x
−2]

+

(
1 +

β

α
x−1

)(
− 2y0(x) +

2

c±
x−1/2y0(x)2 − 4

α
x−1y0(x)3 + · · ·

)
− 4γ

c±α
x−3/2y0(x) +

12γ

α2
x−2y0(x)2 + · · · ,

whose right-hand member is convergent if |x| > 1 and |y0(x)| < |c±x1/2|. Repeating the
same argument as in the proof of proposition 2.1, we obtain the formal transformations

y(x) = c±x1/2 +
β

4c±
x−1/2 +

γ

2α
x−1 +

1

4

(
c±
4

− β2

4c±α

)
x−3/2 + O(−1/2)[x

−2] + z(x),

by which (1.2) is changed into

z(x + 1) + z(x − 1) =
(

− 2 − 2γ

c±α
x−3/2 +

x−2

4
+ O(−1/2)[x

−5/2]

)
z(x)

+
2

c±
x−1/2(1 + O(−1/2)[x

−1])z(x)2 − 4

α
x−1(1 + O(−1/2)[x

−1])z(x)3 + · · ·
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admitting the trivial solution z(x) ≡ 0. In this way we get the formal solutions of (1.2) as in
proposition 2.6.

To prove theorem 2.7, putting y(x) = −√
α/2x1/2 + ξ(x) + z(x) with ξ(x) ∼∑

j�1 c∗−
j x−j/2 in �1 : Re x > r1, and using lemma 4.1, we obtain an equivalent difference

equation of the form (4.1) with

g(x) = λx−3/2 − x−2

4
+ O(x−5/2), λ := −λ∗ = −2γ

α
√

α/2
(7.1)

as x → ∞ through �1, instead of (4.2), where r1 is sufficiently large. The associated linear
system is of the form (5.3) with g(x) given by (7.1). Since

√
g(x) + g(x)2/4 = λ1/2x−3/4(1 +

O(x−1/2)), by (5.5) we have h1(x) = (3/8)x−1(1 + O(x−1/2)), h2(x) = O(x−7/4) instead of
(5.7). Then the system corresponding to (5.8) has the coefficient matrix

B(x) = (
1 + 3

8x−1 + O(x−3/2)
)
I + λ1/2x−3/4(1 + O(x−1/2))J

+ O(x−7/4)K − 3
8x−1(1 + O(x−1/2))L.

By the same argument as in section 5.2, we may find a transformation of the form
v(x) = (I + O(x−1/4)K)y(x) so that this is reduced to a system with the coefficient matrix

E(x) = (
1 + 3

8x−1 + O(x−3/2)
)
I + λ1/2x−3/4(1 + O(x−1/2))J + O(x−7/4)K + O(x−3/2)L.

Observe that σ(x) = 4λ1/2x1/4 satisfies eσ(x+1)−σ(x) = 1 + λ1/2x−3/4 + O(x−3/2). Under the
condition λ < 0 i.e. λ∗ > 0, we have e±σ(x) = O(1) in D

3/4
+∞(r1). Hence the associated linear

system admits the fundamental matrix solution

U(x) =
(

1 + O(x−1/4) 1 + O(x−1/4)

−λ1/2x−3/4(1 + O(x−1/4)) λ1/2x−3/4(1 + O(x−1/4))

) (
e−σ(x) 0

0 eσ(x)

)
x3/8,

σ (x) = 4λ1/2x1/4

with the Casorati determinant det U(x) = 2λ1/2(1 + O(x−1/4)) in D
3/4
+∞(r2) for some r2 > 0.

Using this, we may show that the equivalent nonlinear equation has a solution ω(x) such
that ω(x) ∼ 0 as x → ∞ through D

3/4
+∞(r) for some r > r2, which implies the asymptotic

expression of ϕ∗
−(x) in theorem 2.7. The remaining parts of theorems 2.7 and 2.8 are derived

by using the substitutions (γ, y(x)) �→ (−γ,−y(x)) and (α, x, y(−x)) �→ (−α,−x, y(x)),
respectively.

8. Proofs of the results on (1.3)

To compute the formal solution we substitute y(x) = cx1/2 + y0(x) into (1.3). The left-hand
member is

y0(x + 1) + y0(x − 1) + 2cx1/2 − c

4
x−3/2 + · · · ,

and the right-hand member is

− γ

c2
x−1

∑
j�0

(−1)jY j − α

c
x1/2

(
1 +

β

α
x−1

)(
1 +

x−1/2

c
y0(x)

) ∑
j�0

(−1)jY j

with

Y := −c−2x−1 + 2c−1x−1/2y0(x) + c−2x−1y0(x)2.
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Comparing the coefficients of x1/2 on both sides, we have c = c± = ±√−α/2. Then the
equation is written in the form

y0(x + 1) + 2y0(x) + y0(x − 1) = −β − 2

c±
x−1/2 +

2γ

α
x−1 + O(−1/2)[x

−3/2]

+

(
12 − 2β

α
x−1 − 4γ

αc±
x−3/2 + O(−1/2)[x

−2]

)
y0(x)

+

(
2

c±
x−1/2 + O(−1/2)[x

−3/2]

)
y0(x)2 + · · · + O(−1/2)[x

−(j−1)/2]y0(x)j + · · · .

By y0(x) = −(β − 2)x−1/2/(4c±) + y1(x), this is changed into

y1(x + 1) + 2y1(x) + y1(x − 1) = 2γ

α
x−1 + O(−1/2)[x

−3/2]

+

(
8

α
x−1 − 4γ

αc±
x−3/2 + O(−1/2)[x

−2]

)
y1(x)

+

(
2

c±
x−1/2 + O(−1/2)[x

−3/2]

)
y1(x)2 + · · · + O(−1/2)[x

−(j−1)/2]y1(x)j + · · · ,

and by y1(x) = γ x−1/(2α) + y2(x) we have

y2(x + 1) + 2y2(x) + y2(x − 1) = O(−1/2)[x
−3/2]

+

(
8

α
x−1 − 2γ

αc±
x−3/2 + O(−1/2)[x

−2]

)
y2(x) + · · · + O(−1/2)[x

−(j−1)/2]y2(x)j + · · · .
Repeating further transformations, we obtain the formal solutions �±(α, β, γ, x) =
±√−α/2x1/2 +

∑
j�1 d±

j x−j/2 in proposition 2.10. By y(x) = −√−α/2x1/2 + ξ−(x) + z(x)

with ξ−(x) ∼ ∑
j�1 d−

j x−j/2, equation (1.3) is changed into an equivalent equation of the
form (4.1) with

g(x) = λx−1 + μx−3/2 + O(x−2), λ := − 8

α
, μ := − 2γ

α
√−α/2

,

more precisely, with g(x) expanded into the asymptotic series

g(x) ∼ λx−1 + μx−3/2 + O(−1/2)[x
−2]

as x → ∞ through a half-plane (cf remark 4.1, and, for the symbol O(−1/2)[x−2], see
section 3). Let us start with the associated system of the form (5.3) with g(x) given above.
Observe that √

g(x) + g(x)2/4 ∼ λ1/2x−1/2

(
1 +

μ

2λ
x−1/2 + O(−1/2)[x

−1]

)
.

Then the quantities given by (5.5) also admit the asymptotic representations

h1(x) ∼ x−1

4
(1 + O(−1/2)[x

−1/2]), h2(x) ∼ O(−1/2)[x
−3/2],

and hence we obtain the system

v(x + 1) = B(x)v(x) (8.1)

with

B(x) =
(

1 +
2λ + 1

4
x−1 + O(x−3/2)

)
I +

(
λ1/2x−1/2 +

λ−1/2μ

2
x−1 + O(x−3/2)

)
J

+ O(x−3/2)K −
(

x−1

4
+ O(x−3/2)

)
L.
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Note that each coefficient is also expanded into an asymptotic series in powers of x−1/2 as
x → ∞ through a half-plane.

Let ν0 be a given positive number. By the same argument as in section 5.2 concerning
(5.10) with (5.11), we may find a transformation of the form v(x) = (I + p1x

−1/2K)v1(x)

such that the coefficient of L is reduced to O(x−3/2). Choosing v1(x) = (I + p2x
−1K)v2(x)

suitably, we may further reduce the coefficient of L to O(x−2). Repeating this procedure
we obtain the transformation v(x) = (I + O(x−3/2)I + O(x−1/2)K)v∗(x), by which (8.1) is
changed into

v∗(x + 1) = B∗(x)v∗(x) (8.2)

with

B∗(x) = b∗
0(x)I + b∗

1(x)J + b∗
2(x)K + b∗

3(x)L,

b∗
0(x) = 1 +

2λ + 1

4
x−1 + O(x−3/2),

b∗
1(x) = λ1/2x−1/2 +

λ−1/2μ

2
x−1 + O(x−3/2),

b∗
2(x) = O(x−3/2), b∗

3(x) = O(x−ν0),

where each coefficient is expanded into an asymptotic series in powers of x−1/2. To
reduce the power exponent of the coefficient of K, consider a transformation of the form
v∗(x) = (I + q(x)L)v∗∗(x). A straightforward computation leads us to the following:

v∗∗(x + 1) = B∗∗(x)v∗∗(x)

with

B∗∗(x) = (I + q(x + 1)L)−1B∗(x)(I + q(x)L)

= 1

1 − q(x + 1)2
[((1 − q(x)q(x + 1))b∗

0(x) − (q(x + 1) − q(x))b∗
3(x))I

+ ((1 + q(x)q(x + 1))b∗
1(x) − (q(x + 1) + q(x))b∗

2(x))J

+ ((1 + q(x)q(x + 1))b∗
2(x) − (q(x + 1) + q(x))b∗

1(x))K

+ ((1 − q(x)q(x + 1))b∗
3(x) − (q(x + 1) − q(x))b∗

0(x))L].

Using this fact, we may also construct a transformation of the form

v∗(x) = (I + O(x−3/2)I + O(x−1)L)y(x)

such that (8.2) is taken into

y(x + 1) = E(x)y(x),

E(x) = (b∗
0(x) + O(x−3/2))I + (b∗

1(x) + O(x−3/2))J + O(x−ν0)K + O(x−ν0)L.
(8.3)

Finally putting

y(x) =
(

e−σ(x)x−λ−1/2μ/2 0

0 eσ(x)xλ−1/2μ/2

)
x1/4w(x), σ (x) = 2λ1/2x1/2,

we have the system

w(x + 1) = Q(x)w(x),

Q(x) = I +

(
ε11(x) e2σ(x)xλ−1/2με12(x)

e−2σ(x)x−λ−1/2με21(x) ε22(x)

)
ε11(x) = O(x−3/2), ε22(x) = O(x−3/2), ε12(x) = O(x−ν0), ε21(x) = O(x−ν0).
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If α > 0, then λ1/2 is purely imaginary, and hence e±σ(x) = O(1) in D
1/2
+∞(r1) (r1 > 0). If

ν0 is chosen sufficiently large, then Q(x) − I = O(x−3/2). Thus we obtain the fundamental
matrix solution

U(x) =
(

1 + O(x−1/2) 1 + O(x−1/2)

−λ1/2x−1/2(1 + O(x−1/2)) λ1/2x−1/2(1 + O(x−1/2))

)

×
(

e−σ(x)x−λ−1/2μ/2 0

0 eσ(x)xλ−1/2μ/2

)
x1/4.

Using this, we get the asymptotic solution ψ−(x) of (1.3) under the condition α > 0 by
the same argument as in section 6. The condition α > 0 is invariant under the substitution
(γ, y(x)) �→ (−γ,−y(x)), and hence equation (1.3) simultaneously possesses the asymptotic
solution ψ+(x) = −ψ−(α, β,−γ, x), which implies theorem 2.11. Using the substitution
(α, x, y(x)) �→ (−α,−x, y(−x)), we obtain theorem 2.12.
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Century Later (CRM Ser. Math. Phys.) ed R Conte (New York: Springer) pp 413–516
[5] Grammaticos B, Ramani A and Papageorgiou V G 1991 Do integrable mappings have the Painlevé property?
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